

Martin Mann Freiburg

Overview CPSP Degeneracy HPdesign Summary

Optimal Structure Prediction and Application Freiburg Bioinformatics Group

Martin Mann, Sebastian Will and Rolf Backofen

Albert-Ludwigs-University Freiburg Bioinformatics at the Department of Computer Science

EMBIO Meeting Leipzig 2007

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Native structure prediction

Martin Mann Freibura

The goal

Prediction of the native structure given an AA-sequence

LGGYMLGSA RESOAYYOR

Human prion 1HJM

Assumptions

- Sequence determines structure
- Native structure has lowest energy

Problems

- too complex energy function
- too many degrees of freedom

Native structure prediction

Martin Mann Freiburg

Overview

CPSP

Degeneracy

HPdesign

Summary

The goal

• Prediction of the native structure given an AA-sequence

LGGYMLGSA...RESQAYYQR

 \Downarrow

Assumptions

- Sequence determines structure
- Native structure has lowest energy

Problems

- too complex energy function
- too many degrees of freedom

Computationally not capable!

Simplified Off-Lattice Protein Models One possible abstraction

Martin Mann Freiburg

Overview CPSP Degeneracy HPdesign

Backbone Structure

 C_{α} sequence only

Reduced Alphabet e.g. HP, HPNX, ...

Contact Energy Function e.g. $\begin{array}{c|c} H & P \\ \hline H & -1 & 0.5 \\ P & 0.5 & -0.5 \end{array}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

Full 3D Space all angles etc. allowed

Simplified Off-Lattice Protein Models One possible abstraction

Martin Mann Freiburg

Overview CPSP Degeneracy HPdesign Backbone Structure C_{α} sequence only

Reduced Alphabet e.g. HP, HPNX, ...

Full 3D Space all angles etc. allowed Contact Energy Function e.g. $\begin{array}{c|c} H & P \\ \hline H & -1 & 0.5 \\ P & 0.5 & -0.5 \end{array}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

 \Rightarrow Still too many degrees of freedom ...

Simplified Lattice Protein Models

An other possible discrete abstraction

Martin Mann Freiburg

Overview CPSP Degeneracy HPdesign Summary Backbone Structure

 C_{lpha} sequence only

Lattice Space e.g. cubic, fcc, ... Contact Energy Function e.g. $\begin{array}{c|c} H & P \\ \hline H & -1 & 0 \\ P & 0 & 0 \end{array}$

Reduced Alphabet e.g. HP, HPNX, ...

Simplified Lattice Protein Models

An other possible discrete abstraction

Martin Mann Freiburg

Overview CPSP Degeneracy HPdesign Summary Backbone Structure

 C_{α} sequence only

Lattice Space e.g. cubic, fcc, ... Contact Energy Function e.g. $\begin{array}{c|c} H & P \\ \hline H & -1 & 0 \\ P & 0 & 0 \end{array}$

Reduced Alphabet

e.g. HP, HPNX, ...

Discrete, Enumerable, Computationally Capable

- ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ◆ ■ ■ ● ● ● ●

Simple and nice... But what for? Applications

Martin Mann Freiburg

Overview CPSP

HPdesian

Summary

Applications e.g.

- Neutral nets and protein evolution
- Exploring energy landscapes and protein kinetic
- Base for more complex protein models

Therefore you need:

o . . .

Prediction of optimal structures

NP-complete in 3D-lattice (Berger & Leighton, 1998) (even in 2D)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト シタの

• can be solved by Constraint Programming ! (Backofen & Will, 2006)

Simple and nice... But what for? Applications

Martin Mann Freiburg Applications e.g.

- Neutral nets and protein evolution
- Exploring energy landscapes and protein kinetic
- Base for more complex protein models
- Ο...

Degenera

HPdesign

Summary

Therefore you need:

Prediction of optimal structures

• NP-complete in 3D-lattice (Berger & Leighton, 1998) (even in 2D)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

 can be solved by Constraint Programming ! (Backofen & Will, 2006)

() ...

Martin Mann Freiburg

Overview CPSP

Degeneracy

HPdesign

Summary

Constraint-based Protein Structure Prediction¹

Short introduction

- Optimal structure prediction (CPSP)
- Applications in
 - Protein stability
 - Inverse folding problem

Martin Mann Freiburg

Overview

CPSP

Degenerac

HPdesign

Summary

Constraint-based Protein Structure Prediction (CPSP)

An Approach for optimal structure prediction in the HP-lattice-model

Rolf Backofen and Sebastian Will 'A constraint-based approach to fast and exact structure prediction

in three-dimensional protein models' 2006

Martin Mann Freiburg

Overview

CPSP

Degenerad

HPdesign

Summary

The HP-Model

- simplest energy function available
- focus on hydrophobicity (hydrophobic cores)
- maximizing HH-contacts \leftrightarrow minimizing surface

CPSP - The central idea

- optimal H-monomer distribution is sequence independent
- precalculate such optimal and suboptimal so called *H-cores*

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- try to find a mapping of a given sequence to H-cores
 - \Rightarrow Sequence-Threading

The CPSP Approach H-Cores - the Central Part

H-Core of a given structure

H-Core = set of H-monomer positions

Martin Mann Freiburg

Overview

CPSP

Degenerad

HPdesign

Summary

• Core energy \leftrightarrow structure energy (only HH-contacts important)

optimality implies optimal structure energy

• candidates can be precomputed based on H-number

• hard problem too \rightarrow (solved via CP)

 \Rightarrow for now used as black box and given in a DB ... !

The CPSP Approach H-Cores - the Central Part

H-Core of a given structure

H-Core = set of H-monomer positions

Martin Mann Freiburg

Overview

CPSP

Degenerad

HPdesign

Summary

• core energy \leftrightarrow structure energy (only HH-contacts important)

- optimality implies optimal structure energy
- candidates can be precomputed based on H-number
- hard problem too \rightarrow (solved via CP)

 \Rightarrow for now used as black box and given in a DB ... !

Sequence Threading : The Question to solve ...

Sequence Threading : The Question to solve ...

Sequence Threading : The Question to solve ...

Martin Mann

Freibura

CPSP

The CPSP Approach Solving a Constraint Satisfaction Problem (CSP)

Modelling of the question as CSP

From Solution to structure

- fast standard CP-solvers can be applied for solving
- a CSP solution assigns a lattice position to each monomer
- solution = structure, and optimal due to H-core !
- usually a huge number of solutions / optimal structures

CSP Formulation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

The CPSP Approach Fast and very flexible ...

Martin Mann Freiburg

Overview

CPSP

Degenerac

HPdesign

Summary

The CPSP-Approach

- proven optimal structures via precalculated H-cores
- fast (first hit within seconds)
- deterministic (no stochastic structure space exploration)
- CP yields a very flexible, extensibel modelling

Extensibility

- lattices (cubic, face centered cubic, ...)
- energy functions (HP, HPNX, ...)
- exclusion of symmetric solutions during enumeration
- solution space sampling via distance constraints (D-10)

- advanced CP-techniques for solution counting (D-9)
- ... future: side chain models, structure shapes, ...

The CPSP Approach Fast and very flexible ...

Martin Mann Freiburg

Overview

CPSP

Degenerac

HPdesign

Summary

The CPSP-Approach

- proven optimal structures via precalculated H-cores
- fast (first hit within seconds)
- deterministic (no stochastic structure space exploration)
- CP yields a very flexible, extensibel modelling

Extensibility

- lattices (cubic, face centered cubic, ...)
- energy functions (HP, HPNX, ...)
- exclusion of symmetric solutions during enumeration
- solution space sampling via distance constraints (D-10)
- advanced CP-techniques for solution counting (D-9)
- ... future: side chain models, structure shapes, ...

The CPSP-Approach

Prediction of optimal structures without folding simulation

Martin Mann Freiburg

Overview

CPSP

Degeneracy

HPdesign

Summary

Use

Verifying folding simulation results

Exhaustive enumeration possible

- Creation of interesting test sets for analysis
- Clustering of sequences into proteinlike or not
- Enumeration of the low energy part of the landscape
 → base for kinetic studies
- Base to solve other problems e.g. sequence evolution, inverse folding / designability

The CPSP-Approach

Prediction of optimal structures without folding simulation

Martin Mann Freiburg

Overview

CPSP

Degeneracy

HPdesign

Summary

Use

Verifying folding simulation results

Exhaustive enumeration possible

- Creation of interesting test sets for analysis
- Clustering of sequences into proteinlike or not
- Enumeration of the low energy part of the landscape
 - \rightarrow base for kinetic studies
- Base to solve other problems e.g. sequence evolution, inverse folding / designability

Martin Mann Freiburg

Overview

CPSP

Degeneracy

HPdesign

Summary

Constraint-based Protein Structure Prediction

- Short introduction
 - Optimal structure prediction (CPSP)
- Applications in
 - Protein stability
 - Inverse folding problem

What needs an AA-sequence to be a protein?

Martin Mann Freiburg

Overview

CPSF

Degeneracy

HPdesign

Summary

Observations

- Not all possible AA-sequences used
- Fast folding process (folding funnel hypthesis)
- Usually one stable, native structure

۰...

Degeneracy A measure of protein stability

Martin Mann Freiburg

Overview

CPSP

Degeneracy

nruesiyii

Summary

Degeneracy

- = the number of optimal structures
- important for protein stability
- deg. 1 = indicator for being stable

Degeneracy in Lattice-Models

- is high for most sequences
- due to simple energy function
- assumption: deg. 1 = stable

log₁₀(degeneracy) histogram of 809 HP-sequences (H:P=1:1) (32% with deg. > 10⁶)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

\Rightarrow exact determinable via CPSP approach

Degeneracy Summarizing

Martin Mann Freiburg

Overview

CPSF

Degeneracy

HPdesign

Summary

Degeneracy

- # of optimal structures
 → measure for protein stability
- exactly determinable using CPSP
- usually very high in HP-Model
- e.g. to distinguish proteinlike or random sequences
- counting can be improved ('06)

Martin Mann Freiburg

Overview

CPSF

Degeneracy

HPdesign

Summary

Constraint-based Protein Structure Prediction

- Short introduction
 - Optimal structure prediction (CPSP)
- Applications in
 - Protein stability
 - Inverse folding problem

The Inverse Folding Problem

Design of proteinlike Sequences

Martin Mann Freiburg

Overview

CPSP

Degeneracy

HPdesign

Summary

The goal

design of sequences for a given structure

Sequence constraints

- proteinlike (low degeneracy)
- forms structure as optimal one

Problem

• # of sequences is expontentially in length

Addressed Questions (Designability)

- Is a structure X codeable?
- How many sequences code X?

The Inverse Folding Problem

Design of proteinlike Sequences

Martin Mann Freiburg

Overview

Degenerac

HPdesign

Summary

The goal

design of sequences for a given structure

Sequence constraints

- proteinlike (low degeneracy)
- forms structure as optimal one

Problem

of sequences is expontentially in length

Addressed Questions (Designability)

- Is a structure X codeable?
- How many sequences code X?

\Rightarrow Solved using H-cores and CPSP ...,

► < = ► = = <</p>

HPdesign A 'Generate and Test' Workflow

Martin Mann Freiburg

Overview

CPSF

Degeneracy

HPdesign

Summary

Input

a structure X

HPdesign workflow

- Generate good candidates
- Validate the sequences

Output

- a set of sequences that:
 - form X as their optimum
 - are stable (degeneracy 1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

HPdesign Step 1 : Candidate Generation via H-cores

Martin Mann Freiburg

Overview CPSP

Degeneracy

HPdesign

Summary

Observation

optimal structure ⇔ optimal H-core

Generation

- take an arbitrary optimal H-core C
- shift C through structure X
- store resulting sequence for each hit

Result

 sequences with high chance to form X as their optimal structure

HPdesign Step 2 : Sequence Validation via CPSP Approach

Martin Mann Freiburg

Overview

CPSP

Degenerac

HPdesign

Summary

Task

- Check for each sequences if it
 - is stable (degeneracy 1)
 - forms X as optimal structure

Workflow using CPSP

- 1: for all sequences S do
- 2: $\mathscr{X} \leftarrow \mathsf{CPSP}(\mathsf{S}, max = 2)$
- 3: if $(|\mathscr{X}| = 1 \land X \in \mathscr{X})$ then
- 4: STORE(S)
- 5: end if
- 6: end for

Result of Filtering

stable S that form X as optimum

▲□▶▲□▶▲□▶▲□▶ □□ のQで

HPdesign Summarizing

Martin Mann Freiburg

Overview

CPSP

Degeneracy

HPdesign

Summary

The Inverse Folding Problem

- Design of stable sequences that form a given structure as optimum is a hard task
- Can be solved using 'Generate and Test'
- Candidate set can be shrinked (H-cores)
- Validation via CPSP approach possible

Outlook Questions to answer ...

Martin Mann Freiburg

Overview CPSP

i ii uesiyii

Summary

Open ...

o ...

- What distinguishes proteinlike and random sequences?
- Relations to real protein sequence properties?
- Are there common patterns in stable structures?
- How big are the bassins of attraction of stable optima?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

- Leads one optimal structure to a folding funnel?
- What makes a structure designable?

Summary Take home messages

Martin Mann Freiburg

Overview

CPSP

Degeneracy

HPdesign

Summary

Constraint-based Protein Structure Prediction

CPSP Approach

- Enumeration of optimal structures
- Fast and extensible
- Degeneracy
 - Important measure of protein stability
- Inverse folding problem
 - Find stable sequences that form a structure *X* as optimum

Summary CPSP-tools

Martin Mann Freiburg

Overview

CPSP

Degeneracy

HPdesign

Summary

Constraint-based Protein Structure Prediction

CPSP-tools

- HPstruct: CPSP Approach
 - Enumeration of optimal structures
 - Fast and extensible
- HPdeg: Degeneracy
 - Important measure of protein stability
- HPdesign: Inverse folding problem
 - Find stable sequences that form a structure *X* as optimum

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

CPSP-tools An implementation of CPSP and related methods

Martin Mann Freiburg

Overview

CPSF

Degeneracy

HPdesign

Summary

CPSP-tools

- Implements the CPSP approach etc.
- Object oriented C++
- Library of core classes and functionality
- Completely documented / API
- Freely available

http://www.bioinf.uni-freiburg.de/sw/cpcp/

Fhat's all folks!

Martin Mann Freiburg

Overview CPSP Degeneracy HPdesign Summary

Thanks for patience and interest

Martin Mann Freiburg

(Appendix section)

Protein folding and native structure prediction

Martin Mann Freiburg

Simplified Lattice Protein Models Plus and Minus

Martin Mann Freiburg

Advantages

- ${\ensuremath{\, o}}$ discrete ${\ensuremath{\, o}}$ full enumeration for result validation
- computationally capable
- folding dynamics similar to real proteins (time scale)
- unique folders

Possible Critics

- Energy function (HP) \Rightarrow HPNX, ...
- Lattice type (3D-cubic) \Rightarrow FCC, ...
- Lattice vs. angles \Rightarrow discrete angle model, ...

Return

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Martin Mann Freiburg For a given HP-sequence and an optimal H-core:

Variables

one for each sequence monomer

Domains = sets of lattice positions

- H-Monomers: H-core positions (ensures optimality)
- P-Monomers: remaining lattice

Constraints

- binary Neighboring constraints along the chain (backbone)
- one global Alldifferent constraint (selfavoiding structure)
- \Rightarrow encodes the selfavoiding walk

Martin Mann Freiburg For a given HP-sequence and an optimal H-core:

Variables

one for each sequence monomer

Domains = sets of lattice positions

- H-Monomers: H-core positions (ensures optimality)
- P-Monomers: remaining lattice

Constraints

• binary Neighboring constraints along the chain (backbone)

- one global Alldifferent constraint (selfavoiding structure)
 - \Rightarrow encodes the selfavoiding walk

Martin Mann Freiburg For a given HP-sequence and an optimal H-core:

Variables

one for each sequence monomer

Domains = sets of lattice positions

- H-Monomers: H-core positions (ensures optimality)
- P-Monomers: remaining lattice

Constraints

• binary Neighboring constraints along the chain (backbone)

- one global Alldifferent constraint (selfavoiding structure)
 - \Rightarrow encodes the selfavoiding walk

Martin Mann Freiburg For a given HP-sequence and an optimal H-core:

Variables

one for each sequence monomer

Domains = sets of lattice positions

- H-Monomers: H-core positions (ensures optimality)
- P-Monomers: remaining lattice

Constraints

• binary Neighboring constraints along the chain (backbone)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- one global Alldifferent constraint (selfavoiding structure)
 - \Rightarrow encodes the selfavoiding walk